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Abstract

Numerical simulations for the non-isothermal flow of a nylon-6 fluid passing over a transverse slot with heat dis-

sipation are considered with a differential-type non-isothermal White–Metzner model describing the non-Newtonian

behavior of the melt. The results obtained in the study are computed by using the elastic–viscous split-stress finite

element method incorporating the non-consistent streamline-upwind scheme. As a verification of the numerical scheme,

the algorithm is first applied to compute the corresponding isothermal flow of the upper-convected Maxwell fluid, a

special case of the melt, characterized by constant viscosity and relaxation time. Hole pressure was evaluated for various

Deborah numbers ðDeÞ, and compared with that derived from the Higashitani–Pritchard (HP) theory. The agreement

between the two is found to be satisfactory for creeping flow in the De range for which the HP theory is valid. Sub-
sequently, hole pressure and other flow characteristics were predicted. Furthermore, the effects of heat-transfer, shear-

thinning, and slot geometry on hole pressure were also investigated.

� 2002 Published by Elsevier Science Ltd.

1. Introduction

The flow of a polymeric or viscoelastic liquid between

two parallel plates across a transverse slot, is considered

as illustrated in Fig. 1. Pressure transducers mounted at

points a and b show the readings of Pa ¼ ðpa � sayyÞ and
Pb ¼ ðpb � sbyyÞ, respectively. The difference is called hole
pressure (Ph) in the literature [1,2] and is defined by

Ph ¼ Pb � Pa ¼ ðpb � paÞ þ ðsayy � sbyyÞ. For creeping New-
tonian flow, this value equals to zero. But for polymeric

fluids, we find Ph > 0. This is attributed to viscoelastic

effects.

The understanding of such a flow is important for

engineering applications and has attracted a great deal

of attention in the literature. The earliest theoretical

studies on this problem were conducted by Tanner and

Pipkin [3], for creeping flow of a second-order fluid over

a slot, the hole pressure was found to be one quarter of

the primary normal-stress difference (N1). In 1970, Hig-

ashitani and Pritchard [4] used a different approach and

developed the Higashitani–Pritchard (HP) equation to

estimate the hole pressure (Ph):

Ph ¼
Z sbw

0

N1

2s
ds ð1Þ

where N1 is the primary normal-stress difference in terms

of the shear stress in a simple shear flow, and sbw is the

disturbed wall shear stress at point b shown in Fig. 1.

For formulating the HP equation, Eq. (1), it was as-

sumed that the streamlines, the shear stress and the axial

stress being all symmetrical about the centerline of the

slot. As a result, this equation is valid only for creeping

flow with low Deborah number (De).

Numerical simulation of the hole pressure problem

has been a research topic of considerable interest in re-

cent years. The isothermal simulations were concerned

[5,6] with predicting the ratio of hole pressure (Ph) to the
primary normal-stress difference (N1) as a function of

Reynolds number Re and Deborah number. Richards

and Townsend [7] used the traditional Galerkin finite

element method to numerically solve the isothermal hole

pressure problem for an implicit Oldroyd-type fluid.

Streamline patterns plotted for various flow conditions
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indicate that both inertia and elasticity bring about an

asymmetry in the streamlines. Severe numerical con-

vergence difficulties are encountered when the elasticity

of the liquid is increased. Baird and Read [8] used the

penalty-Galerkin finite element method to simulate the

flow of a polystyrene melt over a rectangular slot per-

pendicular to the flow direction, values of the stress field

predicted by the simulation were compared with those

obtained experimentally by means of flow birefringence.

The limiting elasticity value as determined by the

Weissenberg number (We) for convergence of the algo-
rithm decreased with increased refinement of the mesh.

For the case of non-isothermal flow, calculations were

conducted by Srinivasan and Finlayson [9], using tra-

ditional Galerkin finite element method, they found that

the non-isothermal hole pressure is lower than the iso-

thermal hole pressure, and the maximum temperature

was predicted at the channel centerline for the highest

flow rate (h _cci ¼ 10 s�1) in the study.

A few finite element methods have been developed to

overcome the convergent difficulties encountered when

simulating viscoelastic flow problems. Marchal [10] ap-

plied the streamline-upwind/Petrov–Galerkin finite ele-

ment method to discretize the constitutive equation for

elastic-flow problems, and each element was subdivided

into a 4� 4 subelement for stress analysis. The method

showed good behavior for highly elastic-flow problem,

but was expensive in terms of computer time. Another

method, called the elastic–viscous split-stress (EVSS)

finite element method, was proposed by Mendelson [11]

in 1983 to simulate the flow of viscoelastic fluids with

Newtonian viscosity such as the Oldroyd-B fluids. This

method employs the splitting of the extra-stress into its

viscous and elastic terms, and a change of variables for

the momentum and the constitutive equations, yielding a

set of equations involving the velocity v, the pressure p,
and the new elastic-stress s. The rate-of-deformation
tensor d is also introduced as an additional unknown,
leading to a four-field (v; p; s; d) problem. In 1994, the
EVSS finite element method incorporating the non-

consistent streamline-upwind/Petrov–Galerkin tech-

nique (known as the EVSS/SU finite element method)

was proposed by Debae [12] and found to be accurate

and stable for the viscoelastic flow problems with un-

smooth boundaries.

In the present study, the EVSS/SU finite element

method is used to simulate the non-isothermal creeping

flow of White–Metzner fluids through a channel with a

transverse slot. The flow characteristics of the fluid are

obtained. Subsequently, the effects of non-isothermal

condition, shear-thinning, and slot geometry on hole

pressure are investigated.

2. Mathematical modelling

Fig. 1 describes the geometry and boundary condi-

tions of the problem to be analyzed, i.e. a non-isother-

Nomenclature

Cp heat capacity (kJ/kg �C)
De Deborah number, dimensionless

d rate-of-deformation tensor (s�1)

N1 the primary normal-stress difference (N/m2)

Ph hole pressure (Pa)

p pressure (Pa)

pa pressure at point a (Pa)

P 	
h dimensionless hole pressure

R corner radius (m)

s the elastic part of the viscoelastic stress s
(N/m2)

We Weissenberg number, dimensionless

U average velocity in the channel (m/s)

Greek symbols

$ gradient operator (m�1)

q density (kg/m3)

s the viscoelastic stress of the polymer liquid

(N/m2)

sð1Þ the upper-convected derivative of the vi-

scoelastic stress s (N/m2 s)

dð1Þ the upper-convected derivative of the strain-

rate tensor (s�2)
_cc shear-rate tensor (s�1)

h _cci average shear rate (s�1)
_cc shear rate (s�1)

k relaxation time (s)

/i quadratic basic function

wi bilinear basic function

Fig. 1. Flow geometry and boundary conditions.
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mal creeping flow of a shear-thinning viscoelastic fluid

through a channel with a transverse slot. The dimensions

are as follows: h ¼ 7:5 mm, q ¼ 32 mm, d ¼ 10 mm, and

w ¼ 4 mm. The governed equations are as follows:

Continuity equation:

$ 
 v ¼ 0 ð2Þ
Momentum equation, neglecting body forces:

qðv 
 $Þv ¼ �rp þ $ 
 s ð3Þ

where s is the extra stress.
The total stress tensor is expressed as

r ¼ �pI þ s ð4Þ

where p is pressure and I is the unit tensor.
Energy equation, for fluids with constant density q,

heat capacity Cp, and thermal conductivity k:

qCpv 
 $T ¼ $ 
 kð$T Þ þ s : d ð5Þ

where d ¼ ð$vþ $vTÞ=2.
The non-isothermal White–Metzner equation used

by Chang [13] to model the non-isothermal flow of ny-

lon-6 is defined by the following equation, together with

the curve-fitted parameters and material functions in

Table 1.

s þ ksð1Þ ¼ g _cc ð6Þ

The meaning of each term in Eq. (6) are summarized

as follows:

Upper-convective derivative of the extra stress:

sð1Þ ¼ v 
 $s � $vT 
 s � s 
 $v ð7Þ

viscosity function: g ¼ gð _cc; T Þ,
relaxation-time function: k ¼ kð _cc; T Þ.
The relaxation-time function can be obtained via the

following equation:

kð _cc; T Þ ¼ w1ð _cc; T Þ=2gð _cc; T Þ ð8Þ

where w1ð _cc; T Þ is the primary normal-stress function.

The material functions kð _cc; T Þ, gð _cc; T Þ and w1ð _cc; T Þ are
all temperature and shear-rate dependent. The shear-

rate dependence is described by the Cross model, while

the temperature dependence is of the Arrhenius type.

All the velocity and stress are considered to be iso-

thermal fully developed at the inlet. No slip boundary

condition is applied at the wall. The wall temperature is

constant throughout. Also, the inlet temperature is as-

sumed to be equal to the wall temperature. For the

outlet, the velocity is established by solving the problem

using the corresponding inelastic generalized Newtonian

fluid model with zero normal-force and heat-flux im-

posed at the outlet.

3. Numerical method

Following the EVSS/SU finite element method pro-

posed by Debae [12], the governing equations for the

present flow problem is derived first as follows.

3.1. Dimensionless governing equations in EVSS form

In the EVSS formulation, the viscoelastic stress is

split into its elastic and viscous components:

s ¼ sþ 2gd ð9Þ

where s denotes the elastic component of the viscoelastic
stress and 2gd represents the viscous component.
Upon substituting ðsþ 2gdÞ for s into Eqs. (2)–(6),

the governing equations in EVSS form become:

$ 
 v ¼ 0 ð10Þ

v 
 $v ¼ $ 
 ð�pI þ sþ 2gdÞ ð11Þ

qCpv 
 $T ¼ $ 
 kð$T Þ þ s : d ð12Þ

sþ kðsð1Þ þ 2gd ð1ÞÞ ¼ 0 ð13Þ

Table 1

Rheological data and material functions used in the non-isothermal White–Metzner model for nylon-6

g ¼ g _cc; Tð Þ ¼ g0 Tð Þ 1þ k1 _ccð Þ2
h iðn�1Þ=2 q ¼ 986 kgm�3

g0 Tð Þ ¼ g0;ref exp b1 1=T � 1=Trefð Þ½ 
 Cp ¼ 1450 J kg�1 K�1

k0 Tð Þ ¼ k1;ref exp b2 1=T � 1=Trefð Þ½ 
 k ¼ 0:25 Wm�1 K�1

g0 Twð Þ ¼ g0;ref ¼ 3687 N sm�2 n ¼ 0:7678

w1 _cc; Tð Þ ¼ w1;0 Tð Þ 1þ k2 _ccð Þ2
h i n0�2ð Þ=2

b1 ¼ 8327 K

w1;0 Tð Þ ¼ w1;0;ref exp b3 1=T � 1=Trefð Þ½ 
 b2 ¼ 17300 K

k2 Tð Þ ¼ k2;ref exp b4 1=T � 1=Trefð Þ½ 
 b3 ¼ 18630 K

w1;0 Twð Þ ¼ w1;0;ref ¼ 12:66 N s2 m�2 b4 ¼ 5113 K

k1;ref ¼ 0:01766 s n0 ¼ 1:2

k2;ref ¼ 0:1455 s Tw ¼ 535 K

Tref ¼ 535 K
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d � ð$vþ $vTÞ=2 ¼ 0 ð14Þ

The dimensionless governing equations can be ob-

tained as:

$	 
 v	 ¼ 0 ð15Þ

Re v	 
 $	v	 ¼ $	 
 ð�p	I þ s	 þ 2g	d	Þ ð16Þ

Pev	 
 $	T 	 ¼ $	2T 	 þ Brðs	 þ 2g	d	Þ : d	 ð17Þ

s	 þ Wek	ðs	ð1Þ þ 2g	d	
ð1ÞÞ ¼ 0 ð18Þ

d	 � ð$	v	 þ $	v	TÞ=2 ¼ 0 ð19Þ

where the dimensionless variables are defined as follows:

x	 ¼ x=h, v	 ¼ v=U , $	 ¼ h$, g	 ¼ g=g0;ref , T 	 ¼ ðT�
TwÞ=ðTb � TwÞ, p	 ¼ ph=Ug0;ref , d

	 ¼ hd=U ; and s ¼ sh=
Ug0;ref , while Tb is convectively defined as: Tb ¼ Tw þ 1

(K). Then, the Renolds number, Weissenberg number,

Peclet number, and Brinkman number are defined, re-

spectively as:

Re ¼ qUh=g0;ref ð20Þ

We ¼ Uk0;ref=h ð21Þ

Pe ¼ qCphU=k ð22Þ

Br ¼ g0;refU
2=kðTb � TwÞ ð23Þ

where g0;ref and k0;ref are the viscosity and relaxation-

time constant at zero-shear rate and at reference tem-

perature.

3.2. Weak formulation of the dimensionless governing

equations

The field variables are interpolated within each ele-

ment by

v	 ¼
XN¼8

i¼1
/iv

	
i ; p	 ¼

XM¼4

i¼1
wip

	
i ; s	 ¼

XM¼4

i¼1
wis

	
i ;

d	 ¼
XM¼4

i¼1
wid

	
i ; T 	 ¼

XN¼8

i¼1
/iT

	
i

where v	i , p
	
i , s

	
i , d

	
i , T

	
i are nodal values and /i, wi are

quadratic and bilinear basic functions, respectively.

Following the traditional Galerkin’s manipulations,

the weak form of the dimensionless governing Eqs. (15),

(16), and (19) can be derived thereby asZ
X

wið$	 
 v	ÞdX ¼ 0 ð24Þ
Z

X
/0

iðRe v	 
 $	v	Þ
h

þ $	/0
i 
 ð � p	I þ s	 þ 2d	ÞdX

i

�
Z
s

/in 
 ð�p	I þ s	 þ 2d	Þds ¼ 0 ð25Þ
Z

X
wi d

	�
� ð$	v	 þ $	v	TÞ=2

�
dX ¼ 0 ð26Þ

The traditional Galerkin method is known to be in-

appropriate when the convective terms in the hyperbolic

constitutive equations become dominant as the Weiss-

enberg number increases. The non-consistent stream-

line-upwind/Petrov–Galerkin formulation proposed by

Debae is therefore applied to constitutive Eq. (18). In

this technique, an additional weighing function

(�kk	v	=v	 
 v	Þ 
 $	wi is applied solely to the convective

term Wek	v	 
 $	ðs	 þ 2g	d	Þ of the constitutive equa-
tion. The definition of the dimensionless �kk	 can be found
in Chang [13], and was originally proposed by Debae.

Hence, the following weak form is then obtained:Z
X

wi ðs	
hn

þ Wek	ðs	ð1Þ þ 2g	d	
ð1ÞÞ

i

þ ð�kk	v	=v	 
 v	Þ 
 r	wi Wek
	v	 
 $	ðs	½ þ 2g	d	Þ


o
dX ¼ 0

ð27Þ

Due to the relatively high Peclet number of this problem,

the streamline-upwind Petrov–Galerkin formulation

developed by Brooks and Hughes [14] is used to sup-

press the undesirable oscillations in the calculation of

the temperature fields. To solve the equation by this

method, an additional weighing function formulation

(~kk	v	=v	 
 v	Þ 
 $	/i is applied to all terms of the energy

Eq. (17), where ~kk	 is the dimensionless form of ~kk which
was proposed by Brooks and Hughes. Consequently, the

following weak forms are finally obtained:Z
X

	
/0

i Pev	 
 r	T 	
h

� Br s	ð þ 2g	d	Þ : d	
i

þr	/0
i 
 r	T 	



dX �

Z
s

/in 
 r	T 	 ds ¼ 0 ð28Þ

where /0
i ¼ /i þ ð~kk	v	=v	 
 v	Þ 
 $	/i.

Since the integrals in Eqs. (24)–(28) are integrals of

polynomial functions, they may be readily evaluated

numerically using Gaussian quadrature. The above dis-

cretization processes lead to a system of non-linear

equations of the form

Kðx	Þx	 ¼ f 	 ð29Þ
where Kðx	Þ is global stiffness matrix, f 	 is the force
vector, x	 ¼ ðv	ð1Þx . . . v	ðn1Þx ; v	ð1Þy . . . v	ðn1Þy ; s	ð1Þxx . . . s	ðn2Þxx ;

s	ð1Þyy . . . s	ðn2Þyy ; s	ð1Þxy . . . s	ðn2Þxy ; d	ð1Þ
xx . . . d	ðn3Þ

xx ; d	ð1Þ
yy . . . d	ðn3Þ

yy ;
d	ð1Þ
xy . . . d	ðn3Þ

xy ; p	ð1Þ . . . p	ðn4Þ; T 	ð1Þ . . . T 	ðn5Þ; and n1, n2,
n3, n4, n5 are respectively the number of velocity, elastic-
stress, rate-of-deformation, pressure, and temperature

nodal points.

The Newton–Raphson iteration method is employed

here to solve the above set of non-linear equations. Due

to the sparseness and asymmetry of the global stiffness

matrix, the biconjugate gradient stabilized (BiCGStab)

method [15] has been developed to compute all the un-

knowns at each iteration step. Convergence is consid-

ered to be achieved when the relative error of each of the

dimensionless variables is less than 10�4.
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4. Results and discussion

4.1. Test cases

To verify the numerical algorithm, we considered for

the flow of an upper-convected Maxwell fluid, a non-

shear-thinning case of the melt, past a slot in a channel.

The resulting dimensionless hole pressure (P 	
h ) is evalu-

ated numerically for various Deborah numbers, and is

compared with that derived from the HP theory.

4.1.1. Analytical prediction

For the isothermal fully developed Poiseuille flows,

the analytical solutions for the upper-convected Max-

well fluid are:

sxy ¼ g0 _cc

sxx ¼ 2g0k0 _cc
2

syy ¼ 0

ð30Þ

where k0 and g0 are the relaxation-time constant and
zero-shear-rate viscosity of this fluid, and _cc is the shear
rate of this flow.

The analytical prediction of hole pressure may be

obtained by substituting N1 ¼ sxx � syy ¼ 2g0k0 _cc
2 and s ¼

g0 _cc into Eq. (1), and then carrying out the integral by
changing the variable from s to _cc:

Ph ¼
Z sbw

0

N1
2s

ds ¼ N1

2

����
sbw

0

� 1

2

Z sbw

0

sd
N1

s

� 


¼ g0k0ð _ccbwÞ
2 � 1

2
g0k0ð _ccbwÞ

2 ¼ 1

2
g0k0ð _ccbwÞ

2

However, the exact value of _ccbw is unknown for a given
flow. The best way is to obtain this value by numerical

simulation. Upon dividing Ph by g0U=h, the dimen-

sionless hole pressure (P 	
h ) can be obtained.

4.1.2. Numerical prediction

Numerical simulations are performed for Deborah

number ranging from 0 to 4, corresponding to Weiss-

enberg number ranging from 0 to 0.67. The dimension-

less Deborah number is an indication of the elasticity of

the fluid flow, and defined as:

De ¼ k _ccw ð31Þ

where _ccw is the fully developed wall shear rate in the

downstream channel. De ¼ 6We was observed by Mal-
kus [16] for the upper-convected Maxwell fluid in

Poiseuille flow. Three finite-element meshes containing

144, 264 and 554 elements (labeled M1, M2, and M3

respectively) are used for the calculations, as shown in

Fig. 2. The number of nodes and degrees of freedom

(DOF) associated with each mesh are summarized in

Table 2.

The results from both the numerical simulation and

the theoretical prediction versus Deborah number are

shown in Fig. 3. Solutions from mesh M2 and mesh M3

are virtually identical, indicating that mesh M2 is suffi-

ciently fine to obtain reasonable solutions. But mesh M1

seems to be too coarse to produce the same solutions by

the other two. The agreement between analytical pre-

diction, Eq. (1) and numerical results by meshes M2 and

M3 are excellent for low De creeping flow, for which the
HP equation holds. This consistency partially validates

the reliability of the present code. The deviation is still

less than 10% up to a De value of about 1.0. For higher
De values, a larger deviation exists. This is believed to be
due to a violation of the assumptions of the HP equation

for predicting hole pressure at high De.

4.2. Numerical simulation of the non-isothermal flow of a

nylon-6 fluid passing over a transverse slot

The numerical results for the flow of a nylon-6 fluid

passing over a transverse slot are presented now. The

fluid properties and geometry are fixed, while the aver-

age velocity U in the upstream channel is to be variable.

The average shear rate is defined as

h _cci ¼ U=h

Fig. 2. Meshes used in the current simulation for sharp-corner

case: (a) mesh M1; (b) mesh M2; (c) mesh M3.

Table 2

Characteristics of the finite element meshes used

MESH No. of elements No. of nodes No. of DOF

M1 144 637 2499

M2 264 1139 3281

M3 554 2103 5589
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Simulations using mesh M2 are performed for the

average shear rate h _cci ranging from 0 to 20, corre-

sponding to Weissenberg numbers ranging from 0 to

0.36.

4.2.1. The non-isothermal flow characteristics of the

nylon-6 fluid in the channel with sharp corners

Fig. 4 shows comparisons of the dimensionless

pressure distributions along the channel walls around

the slot for three average shear rates of h _cci ¼ 1:5, 6, and
12. A reference pressure of p ¼ 0 is imposed at point c as

shown in Fig. 1. Along the upper plate of the channel,

the pressure distributions are almost linear for the three

average shear rates, indicating that it is not much in-

fluenced by the presence of the slot. Along the the lower

wall of the channel, the pressure decreases gradually

from the inlet, then rises as the flow approaches the

corner of the slot due to the Weissenberg effect. This

behavior, as also observed by Nishimura [17,18] for a

polymeric fluid, is more significant for a higher elastic

value. Downstream of the slot, the pressure decreases

gradually toward the outlet, except in the downstream

vicinity of the corner where reversed flow may exit. On

the bottom surface of the slot, the pressure is found to be

almost a constant value as shown, which decreased for

lower Weissenberg number flow.

The corresponding dimensionless temperature con-

tours are shown in Fig. 5, the fluid being subjected to

strong shear in the near-wall region due to the relatively

high shear rate of the flow. As a result, the temperature

rises rapidly in the near-wall region. The dissipation heat

is convected downstream with the maximum tempera-

ture occurring near the upper wall at the outlet of the

channel, due to the high Peclet number of this h _cci range.
Hence, the temperature near the channel centerline re-

gion is relatively low. Moreover, downstream of the slot,

temperature distribution near the lower plate is a little

lower than that near the upper plate, because the flow

decelerates more on the lower plate downstream of the

slot.

4.2.2. Effects of non-isothermal, shear-thinning, and slot

geometry

In an attempt to investigate the non-isothermal effect

on hole pressure, the P 	
h values for both isothermal and

non-isothermal flows are plotted versus h _cci in Fig. 6. It is
clear that temperature-thinning decreases P 	

h , especially

at high h _cci. The dependence of P 	
h on the slot aspect ratio

(d=w) for various h _cci is shown in Fig. 7. The P 	
h value

increases with the d=w ratio, and approaches an as-

ymptote for the three average shear rate values. It is

believed that this is due to the decrease of the inertia

effect. The effect of the rounded corner is investigated

with modification of mesh M2 for two rounded-corner

cases (dimensionless radius R	 ¼ 0:05 and 0.1) (Fig. 8).
P 	
h versus h _cci is shown in Fig. 9 for the sharp-corner and
the two rounded-corner cases. It can be observed that P 	

h

increases with h _cci in all cases. Furthermore, P 	
h is seen to

be increased as the corner radius increases for a given

value of h _cci. This may be believed due to a higher flow
rate into the slot when the corner radius gets larger.

Fig. 3. The results from both the numerical simulation and the

theoretical prediction versus De number for the upper-convec-
ted Maxwell fluid.

Fig. 4. Comparisons of the dimensionless pressure distributions

along the channel walls around the slot: (a) upper plate of the

channel; (b) lower wall of the channel and slot bottom.
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Fig. 5. Partial view of the dimensionless temperature contours for three average shear rates of h _cci ¼ 1:5; 6:0 and 12.0. (a) h _cci ¼ 1:5; (b)
h _cci ¼ 6:0; (c) h _cci ¼ 12:0.

Fig. 6. P 	
h versus h _cci for isothermal and non-isothermal cases.

Fig. 7. P 	
h dependence on the slot aspect ratio (d/w) for three h _cci

values.
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5. Conclusion

The EVSS/SU finite element method has been em-

ployed to solve the non-isothermal hole pressure prob-

lem for a nylon-6 liquid. The fluid model used for this

flow simulation is a differential-type non-isothermal

White–Metzner model, which describes the non-New-

tonian behavior of nylon-6. A relatively high Weiss-

enberg number of 0.4 for convergence of the algorithm

has been obtained for the sharp-corner case. This is

believed to be due to the use of the SU scheme, which is

able to smooth out the stress oscillations around the

sharp corners where steep stress gradients are present.

Non-isothermal simulation would be necessary when

the average shear rate in the channel is significant. A

high-temperature flow region is predicted in the near-

wall region at the outlet of the channel for the high

average shear-rate and high Peclet number of this flow

problem, and the temperature in the center line region is

relatively low.

The non-isothermal, shear-thinning, and slot geom-

etry effects on hole pressure are investigated. P 	
h in-

creased with h _cci for isothermal viscoelastic flow is a

result of the Weissenberg effect. This effect reduces when

temperature variation is taken into account. P 	
h increases

with the slot aspect ratio and reaches an asymptote for

all average shear rates. Rounding off the slot corners will

increase P 	
h . The larger the rounding radius, the larger is

the predicted P 	
h .
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